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Abstract-The boundary layer equations describing the high Grashof number lam&r natural convection 
How beneath a heated horizontal surface are solved numerically for an infinitely long strip with a uniform 
temperature central region and horizontal adiabatic extensions on the sides, and for rectangular plates of 
two different aspect ratios kept at constant temperature. The boundary condition required by these 
equations at the edge of the plate is discussed, The results are compared with existing approximate 
theoretical results and with experiments. as well as with the solutions obtained previously using the same 

method for a strip and a circular disk. 

1. INTRODUCTION 

CONVECTION induced by buoyancy below a finite size 

heated horizontal plate (or, equivalently, above a 
cooled plate) at high Rayleigh numbers is one of the 
basic classical problems in natural convection heat 
transfer. Experimental studies of this flow began with 
the works of Weise [I], Kraus [2], and Saunders et 
nl. [3]. The first two works provided Schlieren photo- 
graphs showing that the flow is directed from the 
centre toward the edges of the plate, and that the 
boundary layer thickness decreases in the same direc- 
tion, whereas Saunders et al. measured the heat flux by 
optical means. Fishendon and Saunders [4] reported 
experiments with a heated square plate in air for Ray- 
leigh numbers in the range 8 x lOi- x lo5 and fitted 
the Nusselt number to l/4 to l/5 power laws (Nu N 
Ra’;4 to Nu - Ra”‘). Kadambi and Drake [5] found 
a l/%power correlation for the laminar flow below a 
circular disk, and Birkebak and Abdulkadir [6] mea- 
sured the temperature and velocity distributions in 
the boundary layer beneath a heated square plate 
submerged in water, finding the same power law cor- 
relation. Fujii and Imura [7] and Aihara et al. [8] used 
vertical side walls to create an approximately two- 
dimensional flow under the plate, and measured heat 
fluxes somewhat smaller than other experimenters; 
Fujii and lmura measured the heat flux in water for 
different plate inclinations, and Aihara er al. measured 
the temperature and velocity fields in air. Faw and 
Dullforce [9, IO] carried out measurements of the 
heat flux for downward facing square plates and disks 
using holographic interferometry. They found tem- 
perature distributions similar to the ones calculated 
by boundary layer theory. 

Trying to ascertain the eff‘ect of the lateral sides of 
the plate, Restrepo and Glickman [I I] evaluated the 
heat flux from measurements of the temperature pro- 
files carried out for a square plate in air with heated 

and cooled vertical sides, and for a plate with hori- 
zontal adiabatic extensions. They reported variations 
of the order of thirty percent in the average Nusselt 
number, depending on the conditions at the edges. 
Hatfield and Edwards [12] obtained holographic 
interferograms for a range of Rayleigh numbers and 

adiabatic extensions. 
It was early recognised that the outward boundary 

layer flow depends everywhere on the size and shape 
of the plate, so that: (i) no similarity solution of the 
kind found by Stewartson [13] for a heated semi- 
infinite upward facing plate (see also Gill et al. 1141) 
makes sense near the edge of a downward facing plate, 
and (ii) a boundary condition is required at the edge, 
which affects the upstream flow. Most of the theor- 
etical work has been based on integral methods. Thus, 
using the integral method of Levy [15] and the con- 
dition that the boundary layer thickness vanishes at 
the edge (which is appropriate only for upward facing 
plates). Wagner [16] studied the two-dimensional flow 
below an infinite strip, and Singh et al. [17] extended 
this work to rectangular and circular plates. Singh and 
Birkebak 1181 carried out computations for different 
Prandtl numbers using the alternative condition that 
the singularity appearing in the solution of the ordi- 
nary differential equations yielded by the integral 
method should occur at the edge. They found a finite 
boundary layer thickness there. Fujii et ul. [ 191 proved 
that this latter condition is equivalent to the require- 
ment that the boundary layer thickness at the centre 
of the plate should be minimum. Using somewhat 
different polynomial profiles, they performed com- 
putations for a strip, a circular disk, and a rectangular 
plate with uniform heat flux at the solid surfaces. 
Clifton and Chapman [20] recognised that the sudden 
relief of the constraint of horizontal motion imposed 
by the plate should be felt by the approaching flow, 
which should speed up as much as possible on reach- 
ing the edge. They translated this idea into a critical 
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NOMENCLATURE 

h aspect ratio of the rectangular plate Greek symbols 

Y gravitational acceleration [m s- ‘1 li coefficient of thermal expansion [K ‘1 

B reduced gravity. gB(T, - T, ) [m s- ‘1 1, extent of the heated area relative to the 

GI Grashof number, ,@L’lr’ total arca of the plate 

L half-length of the shorter side of the 0, characteristic boundary layer thickness 

plate [m] [ml 
NU average Nussclt number (equation 0, dimensionless boundary layer thickness 

(13)) (equation (12)) 

P dimensionless pressure 0 reduced temperature (T- T, )!(T, -T, ) 
PI Prandtl number 7” cxponcnt in equation (10) determining the 

s length on the lateral surface [m] behaviour near the edge 
T temperature [K] 1’ coefficient of kinematic viscosity [m’ sag ‘1 
U. v dimensionless .Y and _r components of the t, ye strained x and J’ coordinates (equation 

velocity (II)) 
Ll, characteristic velocity in the boundary P density of the fluid [kg mm ‘1 

layer [m so ‘1 (P exponent in equation (I I) determining the 

11’ dimensionless vertical (3) component of coordinate straining. 
the velocity 

s, _J’ dimensionless coordinates along the Subscripts 
shorter and longer sides of the plate I limiting conditions at the edge of the plate 

: dimensionless coordinate normal to the W conditions at the wall surface 
plate (downward). c/3 conditions far from the plate. 

depth boundary condition for the boundary layer 
thickness at the edge, using an analogy with open 
channel hydraulics. 

Goldstein and Lau [2l] integrated numerically the 
full Navier-Stokes equations (without the boundary 
layer approximation) for the flow around an infinite 
strip at Rayleigh numbers ranging from IO to 104. 

They considered both upward and downward facing 
surfaces with horizontal and vertical adiabatic cxten- 
sions. They also carried out experiments with square 
naphthalene plates in air. 

Schulenberg [22, 231 computed the local heat flux 
at the centrc of an infinite strip and a circular disk at 
large and small Prandtl numbers using an approxi- 
mate analytical method whereby the plate is first sup- 
posed to bc immersed in an outer flow whose velocity 
is then determined using a condition of consistency 
with the buoyancy-induced velocity field. 

Building upon the results obtained before for the 
asymptotic structure of the boundary layer near the 
edge [24]. we analyse here the natural convection flow 
below a rectangular horizontal downward facing plate 
whose temperature is kept at a constant value T,,, 
higher than the temperature T, of the surrounding 
fluid. We consider the limit of large Grashof numbers 
(Gr = JL’/v’ >> I. where ,q = gB(T,, - T, ) and L is 
half of the length of the shorter side of the plate), in 
which several regions can be distinguished in the flow 
around the plate. The most important of these regions 
is the boundary layer beneath the plate, of chardc- 
teristic thickness 6, = O(LjGr’ ‘), where the charac- 
teristic velocity of the flow is u, = O(q’(#L)/Gr” I”). 

The horizontal flow in this boundary layer is driven 
by buoyancy in an indirect manner. Specifically, since 
the hydrostatic pressure distribution depends only on 
the local temperature distribution across the bound- 
ary layer, the pressure in the absence of any motion 
would be higher in the hot fluid beneath the plate than 

in the cold nearby fluid at the same depth but beyond 
the edge of the plate. This pressure difference pushes 
the fluid horizontally outward and, as a consequence, 
the heated layer becomes thinner near the edge than 
in the interior. This, in turn, gives rise to a nonuniform 
pressure distribution everywhere beneath the plate. 
with a pressure decreasing toward the edge, which sets 
the fluid into motion. Owing to the small thickness of 
the boundary layer. the vertical motion of the fluid in 
it is too weak to upset the aforementioned hydrostatic 
pressure balance. which persists when the flow is al- 
ready established. 

The restriction that the plate imposes on the vertical 
motion of the fluid ceases at the edge, and then. under 

the action of buoyancy, the fluid begins to move 
upward in a small region around the periphery of the 
plate. This is another of the characteristic regions 
of the present flow. An order of magnitude estimate 
shows that the incoming flow turns around the edge 
and acquires a vertical velocity of the order of its 
original horizontal velocity within a distance of order 
6,. This comparatively strong accelerating mechanism 
provided by buoyancy is able to deal with any flux 
supplied by the horizontal boundary layer, which 
means that the edge imposes no restriction at all on 
the horizontal boundary layer: the flow reaching the 
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FIG. I definition sketch 

edge will be as large as the indirect driving mechanism 
acting on the boundary layer permit. This is in keeping 
with the idea proposed by Clifton and Chapman, and 
was the basis of the asymptotic analysis of the bound- 
ary layer structure carried out in ref. [24]. 

2. Formulation 

The equations describing the fiow in the horizontal 
boundary layer (see Fig. I) are 

(1) 

where the horizontal distances s and J have been 
nondimensionalised with L; the horizontal velocities 
u and t: with j(~L)/Gr’!‘” ; the vertical distance from 
the soiid surface z (pointing downward) and the ver- 
tical velocity IV with L/Gr’ ’ and ~/(~~)~G~~““, respec- 
tively; the pressure (with the gravity term -_P~~~z 
included) with p, cjL/Gr”‘; and the reduced tem- 
perature is defined as (I= (T- r,)/( 7’, - T, ). 

The most characteristic feature of equations (I)- 
(5) is that the pressure is not known in advance. being 
determined by the flow itself. This gives an elliptic 
character to the problem, in such a way that the 
boundary conditions 

E~=I.=L~=Q--~=O at ==O, (6) 

u=r=0=p=O for z-+cz’, (7) 

and the symmetry conditions 

-3. c:N 
u=~=~=O at x=0, 

du 1 
- = r = g = 0 
$_I 

at ,y = 0, 

(8) 

(9) 

do not suffice to determine the solution, and must be 
supplemented with an additional condition at the edge 

of the plate (x = i I and y = fb; b 2 I being the 

plate aspect ratio). 
In principle, the extra condition should come from 

the matching of the boundary layer and the turn 

around region at the periphery of the plate. It turns 
out, however, that the flow in the turn around region 
need not be studied in detail to obtain this condition, 
and the behaviour of the boundary layer near the edge 
can be found from a local analysis of (l)-(7) only. 
The results of this analysis, carried out in ref. [24), 
can be summarised as follows: matching with the 
strong acceleration occurring in the turn around 

region requires a large pressure gradient in the 
incoming boundary layer. With the scaling of the 
boundary layer, this pressure gradient tends to minus 
infinity at the edge (in the asymptotic limit Gr + co). 
Then, under the action of a pressure gradient of 
increasing magnitude. the boundary layer nearing the 
edge split itself into a two-tiered structure. Transport 

effects are confined to a subiayer whose thickness 
tends to zero at the edge, whereas the Row outside this 
sublayer tends to a limiting state (denoted by the 
subscript I in what follows), being of the form 

{U,L’,P*Oj = iu,(4’,;),“,(I’,“),P,(4’,“),u,(.r,=)) 

+ (I -.+_I U(v, =), V(JJ, z), P(y, z), O(Ji, z,} + . . . 

vi.‘= (I-x)“p’w(.y,z)+ .‘.) (10) 

near the right end of the plate (.Y = 1) (similar 
expressions hold in the rest of the periphery). Here, 
the limiting profiles depend to a large extent on the 
evolution of the flow upstream of the edge, whereas 
the exponent 1 results from the matching with the 
transport sublayer, which is possible only for i rr 
0.308. We may note that i, determines the strength 
of the singularity of the normal derivatives of the 
velocity, pressure, and temperature at the edge. It 
is also worth noticing that upstream propagation of 
gravity waves in the stratified boundary layer becomes 
impossible under the conditions attained by the 
boundary layer immediately upstream of the edge. 
This fact points out the close analogy between the 
behaviour (IO) and the choking conditions often 
found for compressible pipe flow : when (10) holds 
the flow beyond the edge can no longer influence the 
boundary layer because upstream information propa- 
gation becomes impossible. 

Equations (10) provide the extra boundary con- 
dition for the boundary layer at the edge. To 
implement this condition in the numerical solution of 
the boundary layer problem, equations {l)-(5) were 
rewritten in terms of the strained coordinates 

I 
v = ,,),t(b+41)'-(b-);)'l. (11) 

so that, e.g. a/ax = (dgJdx)a/cl,i, with dt/dx N 
l/(1 - 1x1) ’ -* near the edge. Therefore, I- cp is a meas- 
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ure of the strongest singularity effectively allowed 
when a condition of finite or zero <-derivative (ob- 
tained numerically by extrapolation) is imposed at 
5 = + I. This procedure will cope with the singularity 
(IO) if a 40 < i, is chosen. Otherwise, cp is an artificial 
parameter, and the solution should not depend on it. 
This was checked for the results presented below by 
repeating the computations with different values of q, 
Finally, cp = l/5 was used for the two-dimensional 
computations of Section 3 and cp = l/4 for the three- 
dimensional computations of Section 4. 

For the numerical treatment, equations (l)-(9), 
rewritten in terms of (5, 4, z), were discretised using 
centred differences in r. upwind differences for the < 
and r) derivatives in the convection terms, and centred 
differences for the pressure terms. The discrete equa- 
tions were solved with a pseudo-transient method. 
Results of the computations for an infinite strip and 
a circular disk can be found in ref. [24]. Here we 
consider the flow under an infinite strip with adiabatic 
extensions (Section 3) and under a rectangular plate 
for two different aspect ratios (Section 4). 

3. HORIZONTAL STRIP WITH ADIABATIC 

EXTENSIONS 

To simulate the effect of horizontal adiabatic exten- 

sions on the two-dimensional flow under a strip (h 
infinite). the boundary condition (6) for the tem- 
perature was changed to 0 = I at -_ = 0 for Ix] < ;’ and 
PO/(?_- = 0 at z = 0 for ;I < 1.~1 < I. The value 7 = 0.8 
corresponds to one of the cases considered by Hatfield 
and Edwards [12], and ;’ = 0.6 is close to the 0.583 of 
Restrepo and Glickman [I I]. 

The nondimensional shear stress and boundary 
layer thickness for 1’ = 0.4, 0.6 and 0.8, and Pr = 0.7, 
are shown in Fig. 2, and the results for an isothermal 
plate (; = I) have been included for comparison. The 
nondimensional boundary layer thickness is defined 
as 
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FIG. 2. Shear stress and boundary layer thickness on the 
right half of a strip for several adiabatic extensions. 

Pr = 0.7 

0 I 2 3 4 
Y5 

FIN. 3. Temperature and velocity profiles at the edge of the 
strip for several adiabatic extensions. 

(12) 

where Om;ln(.~) is the maximum temperature of the 
section. 

The temperature and velocity profiles at the edge of 
the plate are represented in Fig. 3. The average values 
of the Nusselt number (Nu = Gr”‘ji 0, d.v) for sev- 
eral y’s and Pr = 0.7 are given in Table I. 

As can be seen in Fig. 2, the shear stress increases 
around the point x = y, and so does the local heat flux 
upstream of this point (not displayed). Beyond .Y = y, 
the shear stress tends first to decrease (but still remains 
higher than for a uniform temperature plate over a 
substantial portion of the surface), and finally 
increases again near the edge. where the near-edge 
structure commented in Section 2 is retrieved. The 
boundary layer thickness presents a minimum at 
about .Y = y. This was already noted by Restrepo and 
Glickman [I I], who defined the thickness as the dis- 
tance to the surface beyond which the temperature 
falls below a certain threshold. The increase of the 
thickness downstream of .Y = 1’ is exaggerated by the 
definition used here, because f),,;,, is the temperature 
at the wall, which decreases very rapidly immediately 
downstream of .v = 7, while the rest of the temperature 
profile changes more slowly with X. The apparent 
discontinuities in Fig. 2, specially for ;’ = 0.4, are an 

effect of the coarseness of the grid near the centre of 
the plate. Notice that downstream of .X = 1’ the pres- 
sure increases in the outermost region of the boundary 
layer, due to the increase of boundary layer thickness, 
but decreases in the bulk of the boundary layer. due 
to the decrease of temperature. This gives a large 
fdvourable pressure gradient at .Y = y. which explains 
the large values of the heat flux and the shear stress 
at this point and a short distance upstream. The 
maximum of -?p/Cs at the wall occurs somewhat 
downstream of .Y = ;‘, at about the same position as 
the maximum shear stress. but - ?p/d.~ remains higher 
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Table I. Average Nusselt numbers for several adiabatic extensions (Pr = 0.7) 

i 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 

NuiCr’ 5 0.098 0.137 0.173 0.206 0.237 0.279 0.315 0.361 0.412 

than for an isothermal plate a long distance beyond 
its maximum. 

4. RECTANGULAR PLATES 

Results of the numerical computations for rec- 

tangular plates are presented in Figs. 4-7. The increas- 

- 0 I2 4 7 IO 15 20 25 

FIG. 4. Average Nusselt number for a square (h = I) and a 
rectangular plate (h = 2), and boundary layer thicknesses at 
the centre of the plate, as functions of the Prandtl number. 
Dashed : Strip (h = cc). Dotted : Circular disk. 0 : Saunders 
et irl. [3] (h = 2). x : Restrepo and Glickman [ 1 I] (h = I j. 
V: Fishendon and Saunders [4] (b = 1). 0: Faw and 
Dullforce [IO] (b = I). 0 : Weise ]I] (h = I), a : Birkebak 
and Abdulkadir [6] (h = I). 0: Singh ef a(. 1171 (theory; 

h = 1). A: Fujii et al. [I91 (theory; h = I). 
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FIG. 5. Nondimensional heat flux (12 equi-spaced isolines FIG. 7. x-Derivative of the pressure along lines of constant ?; 
between 0, = 0 and -1) and shear stress on the surface near the right edge of a square plate for Pr = 0.7. The dashed 

(arro~vs) on a quarter of a square plate for Pr = 0.7. line is the slope predicted by the asymptotic theory. 

ing lines in Fig 4 give the average Nusselt number, 

divided by Gr’ ‘_ as a function of the Prandtl number 
for a square plate (b = If and a rectangular plate 
(h = 2). For comparison, the average Nusselt num- 
bers for a strip (h infinite; dashed line) and a disk 
(dotted line) have been plotted in the same figure. To 
make the values of Nu/Gr’/S for a disk commensurate 
with the others, they were first evaluated using the 
radius as the characteristic length and then multiplied 
by 2/~‘~‘, which is the ratio of the radius of a circle 
to the half-length of the side of a square plate having 
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FIG. 6. Nondimensional heat flux along several lines parallel 
to the edge of a square plate for Pr = I. Dashed : Results of 

ref. [I71 (integral method) for 2‘ = 0. 
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the same area: the re-scaling amounts to using the 
half-side of the equivalent plate as the characteristic 
length. Other theoretical and experimental values of 
the Nusselt number arc also included in Fig. 4 for 
comparison. Even though the agreement is generally 
good, many of the experimental results are slightly 
higher than the theoretical prediction. This is prob- 
ably an effect of the finite Grdshof number not 
accounted for in the present boundary layer for- 
mulation; an explanation is given at the end of this 
section. On the contrary, the theoretical predictions 
of ref. [19], obtained with an integral method. are 
slightly lower than the present ones. 

It was noted by Singh et ~11. [ 171 (see also [ 11, 
23, 251, among others) that the circular disk and the 
infinite strip provide upper and lower bounds of the 
average Nusselt number for any reasonable shape of 

the plate, because, owing to geometrical reasons. they 
lead to minimal and maximal relative boundary layer 
thickness. This is confirmed by the present results. 
The decreasing lines in Fig. 4 represent the boundary 
layer thickness at the centre of the plate; the thicker 
boundary layer for the rectangular plate is in keeping 
with the aforesaid tendency. 

The limits of small and large Prandtl numbers are 
specially interesting. In the asymptotic limit Pr CC 1. 
heat conduction reaches farther away from the plate 
than viscosity. Hence, the effect of the viscous terms 
in (2) and (3) is negligible in most of the thermal 
boundary layer, and the balance of the remaining 
terms of (l)--(S) yields zi- = O(Pr-- ‘, ‘), which implies 
a nondimensional heat flux and average Nusselt num- 
ber scaling as Pr’ ‘. In the opposite limit, Pu >> I. fluid 
inertia is negligible in the thermal layer, and a similar 
balance with the left sides of (2) and (3) set to zero 
yields zi = O(Pr-’ ‘) and NuiGr’ ’ = O(Pr’ “). The 
numerical values Nu,/(Gr’ ’ Pv’ ‘) = 0.599 (strip) and 
0.895 (disk) for Pr -+ 0, and Nu/(Gr’ ’ Pr’ ‘) = 0.600 
(strip) and 0.862 (disk) for PP -+ co were computed 
in ref. [24] by solving numerically the corresponding 
scaled boundary layer equations. (The values quoted 
for the disk correspond to having the lengths referred 
to X’ ‘!2 times the radius). Although similar com- 
putations have not been carried out for rectangular 
plates, the results of Fig. 4 lend support to the assump- 
tion that these values would be intermediate between 
those of the strip and the disk. 

Tsolines of the ilondimeilsional heat flux on one 

quarter of the surface of a square plate are given in 
Fig. 5 for Pr = 0.7. The arrows in this figure represent 
the shear stress on the plate. The accumulation of 
isolines near the edge is consistent with the divergence 
of the heat flux implied by (IO). At a given point 
and constant h, the local nondimensional heat flux 
increases with Pr, owing to the decrease of the bound- 
ary layer thickness. On the contrary, the shear stress 
decreases with increasing Pr, because the decrease of 
the Row velocity offsets that of the boundary layer 
thickness. The distributions of heat flux and shear 
stress were compared in ref. [24] with other approxi- 

mate results, obtained by integral methods, for the 
flows under strips and disks. Although similar detailed 
data are scarcer in the literature for rectangular plates, 
a comparison was carried out with the heat flux dis- 
tribution given by Singh et al. [17] for a square plate 
and Pr = 1. The agreement was found to be good (see 
Fig. 6) in the central region of the plate, but gets worst 
near the edges. because of the erroneous assumption 
of zero boundary layer thickness used in ref. [l7]. 
This situation is typical of many other theoretical 

and experimental approaches (see, e.g. Restrepo and 
Glickman [I I] for a discussion of the sources of exper- 
imental error in the vicinity of the edge. or the dis- 
cussion below on the influence of the flow outside of 

the boundary layer). Thcsc disagreements may or may 
not lead to discrepancies in the average Nussclt 
number, depending on whether the errors in the heat 
flux (which is itself higher near the periphery than at 
the centre of the plate) arc offset by the reduced extent 
of the region where they occur. 

Figure 7 is a logarithmic plot of the .\--component 
of the pressure grddicnt near the right edge of the 
plate along six equispaced lines of constant J. (The 
vertical segments in the upper part of the figure give 
the locations of the grid lines). As can bc seen, while 
the values of -?p/is are different for each _v. the 
slopes tend to a common value, in accordance with 
the asymptotic results commented in Section 2. The 
dashed line in Fig. 7 has the slope E.- 1 = -0.692, 
given by the asymptotic analysis (equation (10)). The 
vertical shift of this line is arbitrary. 

To estimate the influence of the flow exterior to the 
boundary layer, which is not taken into account at 
the leading order of boundary layer theory, let us 
consider the rather extreme case of a horizonal surface 
bounded by a vertical or appreciably inclined lateral 
surface extending upward from the edge and heated 
at a temperature comparable to that of the lower 
surface. The hot fluid near this lateral surface rises 
driven by the component of buoyancy tangential to 
the surFace. moving with a velocity of order J(&s) in 
a boundary layer of thickness O(v’:‘s’ “/,q’ “), as 
results from standard estimates (see, e.g. ref. [X]: 
here ,Y is the distance along the lateral surface mea- 
sured from the edge). The entrainment rate of this 
lateral boundary layer is of order #““vi ‘;s’,~, which 
becomes O(~~(~~)~Gr’ ‘) at distances from the edge 
of order L. Since the cnt~~inment of the horizontal 
layer is only of order X:(jjL)/Grf I’, the outer flow is 
controlled essentially by the suction of the lateral 
boundary layer. This suction is also felt inside the 
horizontal layer. where it adds to the outward flow, 
giving rise to velocities and heat Ruxcs higher than the 
ones predicted by present boundary layer analysis. 
The ratio of the entrainment-induced velocity to the 
characteristic horizon~dl velocity (~~(~~)~Gr’, ‘“) is of 
order Gr ’ 21). Thus, although the effect of the outer 
flow is formally small (and the foregoing analysis is 
therefore valid), it can be quite appreciable for finite 
values of Gr of practical interest. 
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5. CONCLUSIONS 

Natural convection high Grashof number flows 
below horizontal heated surfaces obey boundary layer 
equations. However, owing to the self-induced pres- 
sure gradient driving these flows, and to the outward- 
bound motion of the fluid. such equations have an 
elliptic character and require a boundary condition to 
be imposed at the edge of the plate. This condition 
expresses the matching of the boundary layer flow 
with the turn around region at the edge of the plate, 
where boundary layer theory is not applicable. The 
result is somehow analogous to the choking con- 
dition for compressible pipe flows, implying that the 
Row approaching the edge speeds up as much as it 
can before entering the turn around region, where 
even greater (upward) accelerations occur. 

Using the above condition, the boundary layer 
problem has been solved numerically for rectangular 
plates kept at constant uniform temperature. Results 
are presented for two different aspect ratios and a 
range of Prandtf numbers, showing good agreement 
with other theoretical and experimental values. The 
present results confirm that the Nusselt number 
decreases with increasing plate aspect ratios, being 
maximum for a square plate, and that the values for 
any aspect ratio are bounded above and below by 
those of a circular disk and an infinite strip, rcspec- 
tively. 

The effect of horizontal adiabatic extensions on a 
uniform temperature strip has also been analysed. The 
average Nusselt number is given for Pr = 0.7 and 
several lengths of the adiabatic extensions. The influ- 
ence of the insulated regions on the boundary layer 
thickness and flow features has been discussed. 
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